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Figure 2 shows the motion of the object for S” = {ul’l, pYl = 0.7, p,‘~ = 0.32 #SO”, SO” [Y = 13.5 >~“(t,, I+)]. 
I wish to express my gratitude to T. N. Reshetov for his help with the numerical experiments. 
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A. B. NAISHUL 

Moscow 
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The two-dimensional motion of a material point over the active portion of its trajectory can be generalized 

in a naturai way to three dimensions. Corresponding to the traditional Right plane, to which the trajectory 

of motion is confined in three dimensions, we have a set of flight surfaces obtained from it by bending. The 

three-dimensional system of differential equations governing the motion of a material point splits into a 

two-dimensional system, which describes the motion in the flight surface, and a system of ordinary 

differential equations, which describes the bending of the surface. By solving this system of equations one 

can determine by analytical means how the velocity and coordinate vectors over the active portion of the 

trajectory depend on its three-dimensional distortion. The results obtained may be used to analyse the 

three-dimensional motion of a material point, to select trajectories in space and to control the three- 

dimensional motion of the centre of mass over the active portions. In some cases one can actuaily derive 

analytical expressions for solutions to boundary-value and extremai problems associated with the 

three-dimensional motion of a material point. 

1. THE BASIS TRIHEDRON AND THE DIFFERENTIAL EQUATIONS OF ITS ROTATION 

WE SHALL be concerned with the three-dimensional motion of a material point over the active 
portion of its trajectory about a single attractive centre. A physical example of such a motion is that 

t Prikl. Mat. Mekh. Vol. 56, No. 2, pp. 202-211, 1992. 
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of a spacecraft putting an artificial satellite into orbit and manoeuvring in near-terrestrial space as it 
goes through non-coplanar orbits. This three-dimensional motion is described by the following 
system of equations: 

dv;dl=---pw3+u (t, v, r), dr/dt=v (1.1) 

where v is the velocity vector, r is the coordinate vector, t is the time, p is the gravitational 
coefficient and u(t, r, v) is a non-central acceleration vector, which generally depends on the 
reactive, aerodynamic forces, the eccentricity of the gravitational field and other factors affecting 
the motion. 

We shall assume that at the starting time to we have v(&) = vg, r(to) = ro. The motion of the point 
will take place in the fixed plane through these vectors if the non-central acceleration vector lies in 
that plane. Let m, and n, be a pair of unit vectors of arbitrary directions in the flight plane, attached 
to the centre of mass. Let k, be a unit vector from the centre of mass, orthogonal to the flight plane. 
in the direction of the angular momentum vector. The trihedron of the three vectors m, , n,, k, will 
be called the basis trihedron. In the two-dimensional motion of a material point the position of the 
basis trihedron, and hence that of the vectors m,, nc, k,, remains unchanged. 

The position of the point on its trajectory is specified in terms of the angular distance cp, reckoned 
in the flight plane from the vector m, in the counterclockwise sense (see Fig. 1). Then the unit 
coordinate vector r, and the unit vector along the transversal pr may be written as 

r,=m, cos rp+n, sin cp, p,=-me sin yl+n, cos cp (1.2) 

The vectors re , pp, k, form what we call the moving trihedron. 
If the projection of the non-central acceleration vector on the unit angular momentum vector, 

uk = (u, k,), is not identically zero, the motion of the material point will be not two- but 
three-dimensional The instantaneous flight plane and basis trihedron m,, n,, k, will rotate. The 
moving trihedron re, pp, k, will also rotate, but about a moving axis. In this three-dimensional 
motion of the basis and moving trihedrons the position of the unit radius-vector rc and transversal 
vector pc will obey the same formulas (1.2). The angle (p, which we call the three-dimensional 
angular distance, will be defined, as in two-dimensional motion, as the integral of the instantaneous 
angular velocity of revolution of the point over the orbit: 

(1.3) 

where k and Y are the moduli of the angular momentum and the coordinate vectors, respectively. 
The three-dimensional angular distance cp will be reckoned in the instantaneous flight plane from the 
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vector m, in the counterclockwise sense. Under these assumptions the three-dimensional rotation of 
the basis trihedron m,, n,, k, obeys the following system of differential equations: 

dmJdt=g’r,Xm,, dn,/dt=$‘r,Xn, 

dk,/dt=$r,Xk, (1.4) 

lp’=l&rk-‘=u, tg yrk-’ (1.5) 

where uq is the projection of the non-central acceteration on the instantaneous flight piane and y is 
its inclination to that plane. The initial conditions for integrating system (1.4) in three dimensions 
are the same as in two dimensions. 

We will prove that the basis trihadron m,, n, , k, does indeed rotate as described by Eqs (1.4). 
The kinematic equation d(rr,)/dt = v, the equation of the angular momentum d(kk,)/df = rr, X u 

and the orthogonality relation k, x r, = pe imply a system of differential equations governing the 
rotation of the moving trihedron: 

dr,/dt=cp’p,, dp,ldt=-cp’r,+g’k, 

dk,ldt=-$p, (1.6) 

Differentiating Eqs (1.2) and using (1.5), (1.6) and (1.3), we obtain the equations of rotation of 
the basis trihedron (1.4), from which it follows that during the flight the trihedron m,, n,, k, rotates 
as a rigid body about the vector r, at an instantaneous angular velocity +‘, The same is true of the 
moving trihedron r, , pe , k,, with instantaneous angular velocity 

X’=rp’k,+$‘r,: (1.7) 

These results hold true if the angular momentum vector does not vanish at the beginning, end or 
during the motion of the material point. If it does vanish, the unit angular momentum vector k, is 
undefined and the angular velocity of rotation of the basis trihedron $’ tends to infinity, as may be 
deduced from formula (1.5). This may be avoided if we confine our attention to trajectories on 
which the angular momentum vector k does not vanish. Then, however, our results would be 
inapplicable in such an important case as the Iaunching of a spacecraft from a planet’s surface. It is 
therefore desirable to eliminate this exception; this can be done using the fact that the unit angular 
momentum vector k, is differentiable and the angular velocity of rotation of the basis trihedron JI’ is 
bounded in the neighbourhood of points where k = 0. 

Let us consider the launching of a spacecraft from a planetary surface, in three cases. In the first 
case the ship moves vertically, along the radius-vector v//r,, ul]re. In the second case, it lifts 
vertically for a time t, and then turns instantaneously according to the pitching of the reactive 
acceleration vector. At time t-0, therefore, vllr,. u)Ir,, t+O vjlr,, u#re. In the third case we 
stipulate that VII r,, u(jr, at time t + 0, but the angular velocity of rotation of the reactive acceleration 
changes suddenly from zero to w#re, 

In all three cases the vector m, of the basis trihedron points in the direction of rc. In the first case 
the direction of k, may be chosen at will in a plane orthogonal to rp, but the angular velocity of 
rotation of the basis trihedron must vanish identically. It can be shown that in the second and third 
cases, at the instant t +O, 

k,= (r,Xue) (I- (I,, u,) “) --s 

k,= (r,X (oxr,)) ((a, o)- (0, re)*)-“* WI 

The inclination of the reactive acceleration vector to the instantaneous flight plane will be chosen 
as in formula (1.5). Since the basis trihedron is rotating at a bounded velocity I&‘, it follows that 
y = 0 at time t + 0, so the reactive acceleration vector lies in the instantaneous flight plane. If the 
angular momentum vector k vanishes at an interior point of the trajectory then, applying the same 
formulas (1.8), we obtain the unit angular momentum vector k, at time t + 0. 
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2. THE THREE-DIMENSIONAL MOTION OF A MATERIAL POINT IN THE FLIGHT 

SURFACE. GENERATING AND GENERATED TRAJECTORIES 

The unperturbed motion of a material point in a central field may be represented by velocities and 
coordinates in a fixed flight plane and by the vector k,, which describes the motion of the plane. The 
motion may be decoupled in the same way if there is a non-central acceleration, but it lies in the 
flight plane. We will show that a similar decoupling is possible for a three-dimensional orientation of 
the non-central acceleration. 

Resolve the velocity, coordinate and non-central acceleration vectors into their components with 
respect to the basis vectors m,, n,. , k, : 

v=u,,m,-f-v,n,., r=r,m,+r,n, (2.1) 

u=u~rn=+~~n~+il~k~ (2.2) 

Any three-dimensional motion of a material point about a single attracting centre is described by 
the following two-dimensional system of equations: 

dv,ldt=-~r,,,(r,*+r,‘)-“+u, 

dv,fdt==--pr, (rmz+r,2)-4’+u, 

drmldt=v,n, dr,/dt==v, (2.3) 

vmo= (vo, mea), vnO= (vo, neo) 

rmO= fro, mea), rmo= (fo, neo) 
together with the equations of rotation (1.4) of the basis trihedron and relations (2.1). To prove this, 
insert (2.1) into (1.1) and use Eqs (1.4). 

In the general case, when the kinetic projection of the non-central acceleration m,(r) is not 
identically zero, Eqs (2.3) describe the motion of the point in a certain flight surface. 

We now introduce the notions of generating and generated trajectories. Let us assume that the 
motion of our material point in a central field takes place under the influence of a reactive 
acceleration, given by the fight-time functions 

U,=wm’(t), &&=2&‘(t), ull=w;(t) 

A trajectory obtained by integrating the equations of motion (1.1) on the assumption that the 
kinetic projection of the reactive acceleration wk;‘(t) is identically zero is called a generating 
trajectory. A trajectory obtained by integrating the same system of differential equations with the 
same initial conditions, but on the assumption that wk.(t) is not identically zero, is called a 
generated trajectory. For example, the two-dimensional trajectory described when an artificial 
satellite is placed in orbit, when the sighting azimuth at the starting point is 90”, is a generating 
trajectory. The three-dimensional trajectories described when artificial satellites are placed in orbit 
at other inclinations, with the same start and sighting azimuth, are generated trajectories. It is 
obvious that the basis trihedron on a generating trajectory is fixed, but on a generated trajectory it 
rotates as described by Eqs (1.4). 

A generating trajectory v,,(t), v,,(t), r,,(i), r,(t) is obtained by integrating the two-dimensional 
system of equations (2.3), which is independent of the kinetic projection of the non-central 
acceleration. If one knows the kinetic projection of the non-central acceleration wk.(t) and the 

velocities and coordinates I’,,, , v,, , r,,, , r,, along a generating trajectory, then by integrating the 
equations of the basis trihedron (1.4) one can determine the current position of the vectors m,(r), 
n,,(f), k,(r), and subsequently. using formulas (2. l), calculate the velocity and coordinate vectors 
for any generated trajectory. 

The class of generated trajectories associated with a given generating trajectory possesses very 
important properties: at any instant of time, material points moving along ali generated trajectories 
(and, of course, along the generating trajectory) are at the same distance from the centre of mass, 
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and the velocity vectors have the same magnitudes and are inclined at the same angle to the vertical. 
This is easily proved by using formulas (2.1) to construct the scalar products (v, v), (v, r), (r, r). It 
follows from Eqs (1.3) that at any given time the three-dimensional angular distances cp for the 
generating trajectory and all generated trajectories are equal. 

If the velocity and coordinate vectors v, r and the basis vectors m,, n,, k, along a generated 
trajectory are known, one can use (2.1) to determine the coordinates on the generating trajectory 
without integrating the velocity vectors. If the basis vectors m, and np are known on two generated 
trajectories, then 

vz=me2 (m,,, vt) +n,, (I& v,) 

rn=mcZ(m,,, rl) +n,, (n,,, r,) (2.4) 

A flight plane containing a generating trajectory will be called a generating plane. A flight surface 
in which a generated trajectory is situated will be called a generated surface. It is the envelope of the 
instantaneous flight planes (kp(t), r) = 0 and is a ruled surface generated by the three-dimensional 
curve r, (t ) : 

r (1, r) =rre (t) (2.5) 

Since the tangent planes remain unchanged as r varies, this flight surface is developable, conic and 
may be developed. The generating plane is also a developed flight surface and the two-dimensional 
equations (2.3) describe the motion of a material point on this surface. The three-dimensional 
angular distance on a generated trajectory corresponds to the usual angular distance on the 
developed flight surface. Plot the coordinates of a generating trajectory on a sheet of paper, as well 
as the velocity vectors, suitably scaled. Folding the paper along radii, we obtain all possible 
generated trajectories and generated flight surfaces. 

Our results for the case in which the material point is moving in a central field under the exclusive 
influence of reactive acceleration may be generalized to motion in a non-central field in the presence 
of an atmosphere or other perturbing factors. However, for the generated trajectory to be 
independent of them, we require the non-central acceleration vector to be regulated in such a way 
that the components u,(t) and u, (t) are given functions of the flight time. 

Let us consider how our results can be used to select spacecraft trajectories for different 
inclinations of terrestrial satellite orbits. Usually, for each inclination of the satellite orbit one 
chooses a sighting plane that passes through the starting point, and within this plane, a program for 
the rotation of the reactive pitching acceleration vector. If one uses the results of Sets 1 and 2, a 
single generating trajectory v,(t), v,(t), r,(t), r,(t) must be chosen for a certain range of satellite 
orbits. This trajectory is defined in terms of a program for the pitch 6 and the projection wk.(t) of 
the reactive acceleration in the instantaneous flight plane. The inclination y of the reactive 
acceleration vector to the instantaneous flight plane must be chosen in accordance with the required 
inclination of the satellite orbit. 

For generated trajectories the reactive acceleration and the consumed characteristic velocity must 
increase in accordance with the relations 

lk 
0 

w2 I-- w,‘/cos y, Ii?* =: 
f 

w~‘(r)~cos y (T) dT 
. 

It follows from these formulas that at small angles y the consumption is also not large. 

3. SPLITTING OF THE GENERAL THREE-DIMENSIONAL MOTION OF A MATERIAL 

POINT INTO INDEPENDENT MOTIONS: THE RIGID FLIGHT SURFACE AND THE 
MOTION OF THE MATERIAL POINT ON IT 

Let the variable of integration be the three-dimensional angular distance cp. The two-dimensional 
equations of motion of the material point along a generating trajectory and the equations of rotation 
of the basis and moving trihedrons in this case are 
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dv,idq=-pk-’ cos cp+Pk-‘u,, 

dv,ldq=-pk-’ sin rp+fk-‘a, (3.1) 

drldq= (urn cos cp-t-v, sin cp) r’k-I, dtldq=r’k- 

dm,ldfp=g’r~Xm,, dn,fd~=~~‘r,Xn, 

dk,ldtp=q’r,Xk, 

(3.2) 

Here 

dr,ldq=p,, dp,ldcp=-r,+$‘k, 

dk,fdcp=-$*pe. (3.3) 

~‘=~‘l(p’=ukr3k-2=uq tg yrJk-2 

is the relative angular velocity of rotation of the basis trihedron. 

(3.4) 

The solution of Eqs (3.1)-(3.3) as functions of cp will possess al1 the properties of the solution as 
functions of time. Generating and generated trajectories are defined in the same way. Equations 
(3.2) and (3.3), which describe the rotation of the basis and moving trihedrons, respectively, will 
acquire qualitatively new properties if it is not the kinetic projection uk of the non-central 
acceleration that is given but the relative angular velocity of rotation of the basis trihedron, as a 
function of the three-dimensional angular distance, Jl’(cp). The kinetic projection of the non-central 
acceleration is defined from (3.4), and therefore 

~~~kzr-3~.~~~ (3.5) 

Equations (3.2) and (3.3), which describe the rotation of the basis and moving trihedrons, are 
converted in this case to linear equations, which depend only on the relative angular velocity Jl’(cp) 
of rotation of the basis trihedron and not at all on the generating trajectory. Their solutions-the 
unit vectors of the basis and moving trihedrons me, ne, k,, r,, PC-depend only on the 
three-dimensional angular distance and relative angular velocity of rotation Jt’((p) of the basis 
trihedron. 

As shown in Sec. 2, in that case, when the variable of integration is the time t, different generating 
trajectories determine different generated flight surfaces. If the variable of integration is the 
three-dimensional angular distance and the relative velocity of rotation of the basis trihedron is a 
function of this alone, then the generated conical flight surface 

r(r, rp)=r%(cp) (3.6) 

is the same for all generated trajectories. We shall then say that the flight surface is rigid. 
Let us consider the set of trajectories of the moving material point: high, low, with high or low 

flight speeds, affected by different non-central accelerations. If these trajectories are initially on the 
same radius-vector, in the same instantaneous plane, and the kinetic projection of the non-central 
acceleration during the motion is selected in accordance with condition (3.5), they will all lie on the 
same rigid flight surface. Hence the general problem of a material point moving in three dimensions 
under the influence of a non-central point moving in three dimensions under the influence of a 
non-central acceleration splits into two independent problems: to determine: (1) a rigid flight 
surface, and (2) the motion of the point on that surface. 

Consider the unit sphere about the centre of mass, which cuts the rigid conical flight surface. All 
material points whose trajectories satisfy the conditions listed above will describe the same track, 
that is, the intersection of the conical surface with the sphere. The unit vectors of the transversal and 
the angular momentum will also describe the same track. 

It was shown in Sets 1 and 2 how the results could be derived by using the basis and moving 
trihedrons. To determine them, however, it was necessary to integrate the differential equations 
governing their rotation. Another way to get the trihedrons is to integrate the ordinary three- 



Three-dimensional motion of a material point 181 

dimensional equations of motion for the material point itself, i.e. system (l.l), and the differential 
equations (1.3) of the three-dimensional angular distance. Let us assume that by integrating these 
equations we have found the velocity and coordinate vectors v, r and the three-dimensional angular 
distance cp. Knowing these quantities we determine the vectors of the moving trihedron re, pe, k, 
and then, from (2.1), the vectors m, and II, of the basis trihedron. The trihedrons thus determined 
may be used to choose trajectories in space and to design a control system for the motion of the mass 
centre. 

Here is an example. Let us suppose that the relative angular velocity of rotation $‘(cp) of the basis trihedron 
is given. Integrating Eqs (1.1) and (1.3), we determine v(t), r(t) and cp (t) for each instant of time. Knowing cp, 
we can determine +‘(cp) for the same time. Using formulas (3.4), we then determine y and thence the direction 
of the non-central acceleration vector necessary to reorient the trajectory in space as required. 

4. ANALYTICAL DEFINITION OF THE SPACE TRAJECTORY. ANALYTICAL SOLUTION 

OF BOUNDARY-VALUE AND EXTREMAL PROBLEMS 

When the relative velocity of rotation of the basis trihedron $‘(cp) is a constant, the system of 
differential equations (3.3), describing the rotation of the moving trihedron, becomes linear with 
constant coefficients and can therefore be solved analytically. We introduce a rectangular system of 
coordinates X, Y, Z, which coincides at the starting time with the vectors re, pe , k, . In this system of 
coordinates the solution of system (3.3) is 

1 ’ 
1 

$ cos 2a 

rc = --- 0 
2 

sin 2a 

/ + + 

1 

1 i 0 
sina 

1, 

-;““y ~COSXf 

-sin26 C: , 

Pr” 0 II cos a 

” -‘ina 1 sinx+~ : Ocosx 

II II 0 II 
.- sin 2a 

0 1 + cos 2a 1 ! cosx + 
1 

where 

ct.g a=$', (p-=x sin a 

0 
-- cos a 

0 

I 
I’ 

sin x 

(4.1) 

sinx 

(4.2) 

It follows from these formulas that the rigid flight surface is a circular cone with aperture angle cx 
and axis (cosol, 0, sina) in the initial plane reo, k&. The moving trihedron rotates at a constant 
velocity around the axis, x being its angle of rotation. The vectors re , pe , k, of the moving trihedron 
describe circles on the unit sphere at angles 7r/2 - cx, 0, a to the equatorial plane. 

The generating trajectory, as a function of the three-dimensional angular distance, may be 
specified not in rectangular coordinates but in terms of the distance from the centre of mass r(cp), 
the radial and transversal components v,(q), v,(q) of the velocity vector and the flight time. In that 
case one has following relations: 

(4.3) 

which are similar to (2.1). Substituting the known values of the vectors rC, pe from (4.1) into (4.3), 
we obtain analytical expressions for the components of the velocity and coordinate vectors: 
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I + ~0s 2a + (1 - cos 2a) cos x 

(4.4) 

((1 - cos2a)cosx -+ 1 + cos2a)u, - 2sinasinp,l 

VTZ- i 2sinasinxv,+ ~COSXV, // 
(-sin2acosx+sin2a)or+ 2cosasin~!~, II 

We shall show that the methods developed here will yield analytical expressions for solutions of a 
three-dimensional boundary value problem. Let us assume that the problem is concerned with the 
rotation of the orbital plane through a given angle B, Then it must be true that 

(k,o, k,) =cos fi 

Substituting the vector k, from (4.1) into this formula and carrying out some algebra, we get an 
equation 

cos a sin x/2=sin p/2 

Determining the angle 01 from (4. l), we determine the relative angular velocity of rotation Ji’ of the 
basis trihedron and the value of the angular distance cp, after which $’ must be equated to zero. The 
analytical solution of this boundary value problem does not depend in any way on the generating 
trajectory. Therefore, once the parameters JI’ and ip have been chosen on any three-dimensional 
trajectory, the instantaneous flight plane will turn through the given angle @, provided the kinetic 
projection uk of the non-central acceleration is given by (3.5). 

We will now show that the methods developed in this paper sometimes make it possible to obtain 
analytical solutions of extremal problems. Let us assume that the active portion is sufficiently short. 
Then, if the unit vector r, does not vary significantly during flight along the active portion, an 
examination of Eqs (1.4) shows that the angle of rotation p of the orbital plane is approximately 
equal to the angle of rotation + of the basis trihedron. Consider the problem of minimizing the 
consumption of characteristic velocity w for a given rotation JI of the basis trihedron: 

‘k 

w =_. s ((u;ij* + (w,‘jyi d-z t. 
I@ = \ w,‘rk- dt 

E 
We will assume that a generating trajectory is given. Then, varying the conditional functional 
w f $/A as a function of the kinetic projection wk’ of the reactive acceleration and performing the 
necessary algebra, we obtain an analytical expression for the inclination of the reactive acceleration 
to the instantaneous flight plane: 

t,g ~=h(u,:-hz)-‘~ 

The constant h must satisfy the relationship 

fl 
‘$I = h \ VP-,’ (YI;z - I+*)-‘4 iO*‘ dt 

t. 

(4.5) 

(4.6) 

When satellites are placed in orbit nowadays, variation of the flight plane is generally achieved by 
specifying the sighting plane at the start; as the point continues its flight in the sighting plane, the 
direction of the jet thrust turns in accordance with the pitch. The simple quasi-optimal method (4.9, 
(4.6) for specifying the jet thrust direction may somewhat reduce the consumption of characteristic 
velocity necessary to place a satellite in orbit. 


